High frequency radial movements of the reticular lamina induced by outer hair cell motility

نویسندگان

  • Günter Reuter
  • Alfred H Gitter
  • Ulrich Thurm
  • Hans-Peter Zenner
چکیده

Recently, it was shown in cochlear explants from the guinea pig cochlea that electrokinetic motile responses of outer hair cells can induce radial and transverse motion of the reticular lamina. Here we demonstrate, that the radial component of these motions can be measured up to high frequencies (15 kHz). Cochlear explants were taken from guinea pig inner ears and exposed to a sinusoidal electric field. A double photodiode was used as a linear position detector with high spatial and temporal resolution to detect radial movements in the plane of the reticular lamina. The organ of Corti of the second, third and fourth cochlear turns was stimulated with frequencies of the electrical field between 0.5 Hz and 20 kHz. Sinusoidal movements of up to 15 kHz were recorded. At higher frequencies the signal-to-noise ratio became too small. The largest responses were measured at the three rows of outer hair cells. If the strength of the electrical field was 2 kV/m, into which the cochlear explants were placed, the amplitudes of outer hair cell movements were around 1 micron at 1 Hz and 10 nm at 10 kHz. Uncoupling of the outer hair cells from the tunnel of Corti and from the inner hair cells decreased the oscillations of inner hair cells but did not affect outer hair cells. The movements showed frequency dependent amplitudes like a complex low-pass filter but no best frequency was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reticular lamina and basilar membrane vibrations in living mouse cochleae.

It is commonly believed that the exceptional sensitivity of mammalian hearing depends on outer hair cells which generate forces for amplifying sound-induced basilar membrane vibrations, yet how cellular forces amplify vibrations is poorly understood. In this study, by measuring subnanometer vibrations directly from the reticular lamina at the apical ends of outer hair cells and from the basilar...

متن کامل

Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry

It is generally believed that the remarkable sensitivity and frequency selectivity of mammalian hearing depend on outer hair cell-generated force, which amplifies sound-induced vibrations inside the cochlea. This 'reverse transduction' force production has never been demonstrated experimentally, however, in the living ear. Here by directly measuring microstructure vibrations inside the cochlear...

متن کامل

Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.

UNLABELLED The exquisite sensitivity and frequency discrimination of mammalian hearing underlie the ability to understand complex speech in noise. This requires force generation by cochlear outer hair cells (OHCs) to amplify the basilar membrane traveling wave; however, it is unclear how amplification is achieved with sharp frequency tuning. Here we investigated the origin of tuning by measurin...

متن کامل

Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms.

There is current debate about the origin of mechanical amplification whereby outer hair cells generate force to augment the sensitivity and frequency selectivity of the mammalian cochlea. To distinguish contributions to force production from the mechanotransducer (MET) channels and somatic motility, we have measured hair bundle motion during depolarization of individual outer hair cells in isol...

متن کامل

Vibration pattern of the organ of Corti up to 50 kHz: evidence for resonant electromechanical force.

Electromechanical force derived from the soma of the outer hair cell has long been postulated as the basis of the exquisite sensitivity of the cochlea. The problem with this postulate is that the electrical source and mechanical load for the electromechanical outer hair cell might be severely attenuated and phase-shifted by the electrical impedance of the cell and the mechanical impedance of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hearing Research

دوره 60  شماره 

صفحات  -

تاریخ انتشار 1992